highlike

Skylar Tibbits

Aerial Assemblies
Self-Assembly is a process by which disordered parts build an ordered structure through local interaction. We have demonstrated that this phenomenon is scale-independent and can be utilized for self-constructing and manufacturing systems at nearly every scale. We have also identified the key ingredients for self-assembly as a simple set of responsive building blocks, energy and interactions that can be designed within nearly every material and machining process available. Self-assembly promises to enable breakthroughs across every applications of biology, material science, software, robotics, manufacturing, transportation, infrastructure, construction, the arts, and even space exploration.

SKYLAR TIBBITS

Impression de Roche
Le monde est « sur le point d’être révolutionné » par l’impression 3D depuis des années maintenant, mais à part le prototypage rapide, les selfies 3D et la maison imprimée en 3D occasionnelle, nous n’en voyons pas grand-chose tous les jours. Alors pourquoi cette technologie n’a-t-elle pas révolutionné les infrastructures modernes ? L’une des raisons est qu’il doit encore concurrencer le béton, l’un des matériaux les moins chers, les plus polyvalents et les plus efficaces de l’histoire de l’architecture. Lors de la Biennale d’architecture de Chicago, le Self-Assembly Lab du MIT et Gramazio Kohler Research de l’ETH Zurich ont présenté un processus qui pourrait enfin assembler le béton, en utilisant uniquement une extrudeuse d’impression 3D, des roches, des cordes et une conception intelligente.

Rafael Lozano Hemmer

Redundant Assembly
In “Redundant Assembly” an arrangement of several cameras composes a live-portrait of the visitor from six perspectives simultaneously, aligned using face detection. The resulting image is uncanny, detached from the laws of symmetry and the depth perception of binocular vision. If several visitors are standing in front of the work, a composite portrait of their different facial features develops in real time, creating a mongrel “selfie”.

Louis-Philippe Demers

Repeat
In the midst of the promises and fears surrounding robots and Artificial Intelligence, especially in the manual labour sector, Repeat attempts to imagine the illusory dance moves of the so-called augmented body tainted with the gender stereotypes of human ballet duets. Repeat shifts the performing body of the assembly line into the performing body onstage, unceasingly carrying out its tasks. The body meshed with the industrial exoskeleton tolerates and sustains strenuous tasks but ironically, it enables those actions to be repeated even more. Repeat uses passive industrial exoskeletons that are currently deployed in the workplace. This ain’t no fiction, this is the future promised to the human worker.

AADRL

Project Orb[i]s
Orbis is a proposal for a Prototypical System, which is highly adaptive in nature, and creates an urban infrastructure that responds and caters to the changing needs and conditions within the city, by augmenting the everyday experiences and activities. Orb(i)s is a behavioral assembly that establishes the possibilities of a dynamic environment not limited to a building plan; rather, it is autonomous, adaptable, dynamic and self-assembling based on real-time data culminating in a constantly reconfiguring ecology. The sensing abilities of the system make it self-aware and encourage any decision-making, while its self-assembling quality arises from a unit-to-unit communication that leads to a higher order of organizations and structures.

Skylar Tibbits and Arthur Olson

The Self-Assembly Line
Can we create objects that assemble themselves — that zip together like a strand of DNA or that have the ability for transformation embedded into them? These are the questions that Skylar Tibbits investigates in his Self-Assembly Lab at MIT, a cross-disciplinary research space where designers, scientists and engineers come together to find ways for disordered parts to become ordered structures.

Skylar Tibbits

Rock Print
The world has been “about to be revolutionized” by 3D printing for years now, but aside from rapid prototyping, 3D selfies, and the occasional gimmicky 3D-printed house, we don’t see much of it every day. So why hasn’t this technology revolutionized modern infrastructure? One reason is that it still has to compete with concrete, one of the cheapest, most versatile, and efficiently delivered materials in the history of architecture. At the Chicago Architecture Biennial, Self-Assembly Lab at MIT and Gramazio Kohler Research of ETH Zurich showed off a process that might finally one-up concrete, using only a 3D printing extruder, rocks, string, and smart design.

Angelica Mesiti

Assembly
‘In ASSEMBLY, I explore the space where communication moves from verbal and written forms to non-verbal, gestural and musical forms. The latter creates a sort of code upon which meaning, memory and imagination can be overlaid.’