highlike

DCA-CREW DESIGN FOR ARCHITECTURE

The Freshwater Factory

source: archello

The exterior shell was designed based on the aerodynamic properties of bubbles against cross-wind deflection during strong ocean winds. Three legs at the base and a structural braced core provide additional resistance against lateral forces.

According to the wind and solar orientations, there are gaps between bubbles at different levels. Green spaces and sky-gardens are accommodated in these gaps to provide the building and the community with social spaces. Intelligent trapdoors in these areas allow natural ventilation produced by the chimney effect of the central atrium. The electrical and mechanical systems are embedded in pipes running along the facade that illuminate with different colors at night. Some of the green elements of the Bubble Skyscraper are: wave energy convertors, water recollection systems, solar panels, and wind turbines.

An extended description:

One of the 21 century stunning evolutions is apparently the vertical growth in the cities. Skyscrapers tend to function as a small city with varies of different facilities. Organizing such buildings, however, is far from an easy task. One of the major concerns of an architect is to make designs compatible with nature, especially in rural or urban spaces. Architecture must go toward the use of the latent potentials in nature to enhance the living conditions.

By considering the project location and by inspiring from nature, we taught of the bubbles created when the waves strike the rocks or the ones floating on the shoreline over the sands. We imagined a skyscraper that has a bubble like shape; Bubbles that come from the heart of the sea and rise towards the sky. The organic structure of bubble and its tenuous nature may cause calmness in today’s crowded urban appearance. After studying the bubble constructions with the Kelvin theory, the Weaire-Phelan structure and the Voronoi structure, we started the design process. We created a 3D computer model with Autodesk 3ds Max to find the junctions between the bubbles and find out how bubbles could seat beside each others.

The Exterior shell was designed based on aesthetic appeal and an aerodynamic damping shape to oppose cross-wind deflection during strong winds, supported by a structural braced core, which also functions as a vertical access. Using tree legs at the base provides additional resistance against lateral forces like earthquake, wind and sea waves. To eliminate unnecessary traffic for the skyscraper residents, we embedded multifunctional spaces such as commercial, service, and administrative spaces in different levels according to the nearest accessibility for residential parts.

Also, according to the wind and the solar orientation, we designed gaps between bubbles in different levels. Green spaces and sky-gardens are accommodated behind the gaps in order to serve as social spaces. By considering intelligent trapdoors in these spaces, the building can achieve proper winds for natural ventilation produced by the chimney effect in central atrium. The great interior space also fills the building with light for giving a liveliness, vitality and freshness to the place. The electrical and mechanical facilities are embedded in pipes running on the facade. Lighting these pipes with attractive colors at night enhances the skyscraper aesthetic appeal.

Other attractive areas are the suspended common spaces and restaurants, which stay half inside and half outside of the sea, where users can enjoy large aquariums. Moreover, due to the world wide concern about global warming and according to the fact that fossil fuel consumption is a big threat to our planet and the fuel resources are rapidly exhausting, we embedded wave energy convertors in cells at the sea level to convert the wave energy to electrical energy for use in the skyscraper. To achieve self-sufficiency in water supply, a system collects and stores the rainwater. This water is refined using filters and drinkable water is directed to the building water cycle.
.
.
.
.
.
.
.
source: inhabitat

Unlike a traditional skyscraper, the freshwater factory is proposed not for the city but for the Almeria province of Spain for its sunny weather and favorable growing conditions. A special mention in the 2010 eVolo Skyscraper competition, the bulbous building would house a freshwater factory filled with mangroves that would convert saltwater into drinking water which could then be used to grow food crops.

In order to facilitate water purification, the tower will be made up of several circular tanks filled with brackish water (water that has more salinity than fresh water, but not as much as seawater), which will be enclosed in spherical greenhouses. Using tidal powered pumps, the brackish water will be brought up into the tower and circulate through the mangrove plants, which have the unique ability to thrive on brackish water and perspire freshwater. The freshwater sweat then evaporates and condensates into dew on wall of the greenhouse and is collected in a freshwater tank. The resulting freshwater can then be distributed to the fields using gravitational flow.

According the designers, one hectare of mangroves should be able to produce 30,000 liters of freshwater a day. In other words, the tower would be able to irrigate a one-hectare field of tomatoes per day.
.
.
.
.
.
.
source: urbanismoru

Еще один проект фабрики для переработки пресной воды разработали специалисты архитектурной мастерской Design Crew for Architecture. Название проекта – Фабрика пресной воды. Сейчас, многие предполагают возникновение водного кризиса, поскольку, приблизительно, только 1 % пресной воды на земле присутствует в жидкой форме. Design Crew for Architecture создали проект эко-небоскреба, форма которого напоминает скопление пузырей. В структуре строения придумана естественная система опреснения воды, без применения при этом электричества. Экологический небоскреб будет использовать свои пузыри, заполненные мангровыми деревьями, с помощью которых будет проведен процесс фильтрации воды и превращение ее из соленой в питьевую. Также, эта вода может быть использована для ирригации.
.
.
.
.
.
.
.
source: tuttogreenit

Un esempio emblematico ci è dato dallo studio di progettazione Design Crew for Architecture che ha ideato un grattacielo in grado di generare acqua potabile. Tale grattacielo è formato da strutture simili a bolle impilate le une sulle altre che fungono da impianto di fitodepurazione delle acque. Innanzitutto la costruzione di tale struttura non è prevista in una città ma bensì nella provincia di Almeria in Spagna. Qui, infatti, esistono le condizioni ambientali e climatiche che rendono realizzabile il progetto.

Queste bolle costituenti il grattacielo non sono altro che serre all’interno delle quali è prevista la presenza di mangrovie. Tale struttura sarà costruita nei pressi di aree con acqua salmastra, condizione ideale per la crescita di tali alberi. Utilizzando un sistema di pompe l’acqua salmastra verrà inviata all’interno di queste serre consentendo l’irrigazione degli alberi.

L’acqua salmastra, grazie al processo di traspirazione foliare, verrà immessa all’esterno dalle piante sotto forma di acqua dolce in quanto i sali verranno trattenuti e utilizzati dalle piante. L’acqua traspirata si condenserà sulle pareti delle serre e verrà raccolta in alcuni serbatoi. Tale acqua così raccolta potrà essere utilizzata per l’irrigazione dei campi coltivati circostanti sfruttando il flusso gravitazionale.

Si presuppone che un ettaro di mangrovie sarà in grado di produrre giornalmente circa 30.000 litri di acqua dolce in grado quindi di irrigare un campo di pomodori grande un ettaro.
.
.
.
.
.
.
.
.
source: renklisheyler

Tahmin edilebileceği gibi, hernekadar Dünya’nın büyük bir kısmı sularla kaplı olsada, bu suların %97′si tuzlu, %2′si ise buzullarda kitlidir. Tüm bu suların sadece %1′i içilebilir su niteliğinde olup, Dünya Su Konsülünce 2030 yılı civarında dünya nüfusunun yarısı temiz ve içilebilir su krizi içinde olacağını ön görülür. Kısacası temiz ve taze su çağımızın en önemli problemlerinden biridir. Üstelik içilebilir su ihtiyacının yanı sıra, besinlerin üretimi ve tarım için kullanılacak suda katılınca durumun ciddiyeti daha belirgin olacaktır.

Taze suyun %70′i tarımda kullanılmaktadır. Bu nedenle bu projede tarım için sağlanacak taze suyun, deniz suyundan sağlayabilecek bir kule (yada gökdelen) önerisi geliştirilmiştir.

Kule aslında, içi tuzlu su ile dolu dairesel tank olan bir çok küresel seranın bileşiminden oluşur. Tuzlu su kuledeki tanklara, borularla, denizlerdeki gelgitlerin gücü ile pompalanıyor. Su borularından oluşan ağ kulenin ana yapısını oluşturur. Tankların içine, tropikal kuşaktaki kıyı ve bataklıklarda yetişen bir bitki cinsi olan mangrov ekilecektir, çünkü bu bitki özellikle tuzlu suda ve çok nemli hava koşullarında yetişebilmektedir. Bu bitki tuzlu suyla beslenip, yapraklarından taze ve temiz su terleyecek ve bir tür doğal su arıtma aracı olacaktır. Yapraklardaki bu taze su daha sonra sera içinde buharlaşacak ve seranın küresel duvarlarında çiğler (su damlaları) birikecek. Ve bu biriken su damlaları küresel duvarın kenarlarındaki tanklarda toplanacaktır. En sonunda, tanklarda toplanan bu taze sular, kulenin çevresinde bulunan tarım alanlarına, yerçekimi yardımı ile dağıtılacaktır. Kuleyi oluşturan Küresel Seraların yüzeylerinin toplamı 1 hektar kadardır. 1 hektarlık alanda ekilmiş mangrov bitkisi, günde 30 bin litre temiz su üretebileceği hesaplanmış. Mesela bu kulede üretilen taze su ile 1 hektarlık domates tarlası hergün sulanabilir.
.
.
.
.
.
.
.
source: medioambiente

Este edificio está formado por decenas de burbujas apiladas unas encima de otras. La idea consiste en utilizar plantas vivas, en cada una de ellas, capaces de desarrollarse con altas concentraciones de sal en el agua para favorecer la evaporación del agua. Para facilitar la depuración del agua se mezcla el agua de mar con agua potable con el objeto de disminuir la salinidad y permitir a las plantas hacer su trabajo. Dentro del proyecto está pensado utilizar la energía mareomotriz para impulsar las bombas. Está pensada para climas soleados. El calor evapora el agua que resbala por las paredes y es recogida en un tanque de agua dulce por gravedad. Los diseñadores estiman que una hectárea de cultivo puede producir unos 30.000 litros de agua dulce al día.