highlike

Marin Sawa

Марин Савва
مارين سوا
Algaerium

Marin Sawa

source: highlike

Work: 2009- Ongoing

Algaerium is an in-vitro aesthetic photosynthesis system of microalgae for spatial installation of algal biotechnology in the urban environment. As a collective family, each member of Algaerium represents an urban bio-repository, floating biota, in which to preserve the microorganisms for their future biotechnological use such as bio-energy. Through displacement into the urban environment, Algaerium re-contextualises the sterile environment of the algae culture laboratory. I have incorporated and manipulated the endogenous yet ‘re-programmable’ biological processes of photosynthesis and bioluminescence.

Adapting molecular gastronomy technology to encapsulation of ‘ethereality’, I have created an environmentally interdependent chain mechanism of ‘metabolic’ colour creation.
Algaerium contains and visualizes bioluminescence in its transparent tubular vessel. Microalgae, “Pyrocystis lunula”, are suspended in transparent growth liquid. These cells need exposure to light and darkness in order to biosynthesise bioluminescence through photosynthesis in their cells. The fluid-dynamic movement of this aquatic system agitates the microorganisms, which respond to bioluminescence. This luminous bio-property is a nocturnal behaviour controlled by the entrainable circadian rhythm of the microalgae. But here I have reprogrammed them under an artificial environment so that their nocturnal time is our daytime.
Algaerium contains green microalga “Tetraselmis” in its transparent tubular vessel. This microalgae possesses striking green chlorophyll, a biosensor of light. The microorganisms are encapsulated in protective membrane through skills adapted from molecular gastronomy. The fluid-dynamic movement of the system creates a circulation of green spheres, each containing thousands of the immobilized microalgae. The encapsulation protects the cells from the otherwise toxic sensory liquid. Such surrounding yellow liquid acts as a biochemical sensor to photosynthetic metabolism of the algae by colour oscillation from yellow to purple.
Microalgae in liquid suspension are encapsulated within breathing second skin created by molecular gastronomy technology. I have immobilized and suspended microbial life in sterile transparency. The microorganisms’ life is immobilized and ‘sustained’. This in-vitro environment contains the prerequisites of phototrophic life, namely light, water and CO2 into the encapsulated cells for photosynthesis. This living system of cell immobilization encourages preservation: sustenance rather than growth. What you see here is an artificial urban biota of algae displaced from different geographical climates and waters.
.
.
.
.
.
.
.
.
source: print3dworld

Los científicos llevan unos cuantos años explorando las posibilidades de crear alimentos con tecnologías de impresión 3D. Y parece que esa visión futurista en la que cada casa podría tener una bioimpresora para la fabricación de alimentos podría estar más cerca. En el ámbito de la industria aeroespacial es donde más interes hay por crear una impresora 3D capaz de imprimir alimentos para los astronautas durante sus largas estancias en el espacio. La NASA anunció en mayo financiación para el desarrollo de una bioimpresora 3D. Pero cada vez están surgiendo más ejemplos de impresoras de alimentos más allá del ámbito meramente experimental. La semana pasada comentaba el ejemplo de “The Sugar Lab”, fabricante de dulces de azucar mediante impresión 3D.

Otro ejemplo más de los avances en este campo es el de la investigadora Marin Sawa, que está trabajando en colaboración con el Imperial College de Londres para desarrollar una nueva tecnología de impresión 3D de microalgas. El resultado de esta investigación es la bioimpresora Algaerium, un dispositivo que permite imprimir combinaciones de diferentes algas -Chlorella, Spirulina y Haematococcus- según las necesidades nutricionales. En un principio, las algas pueden resultar un alimento poco apetecible, pero son muy nutritivas, ricas en minerales y vitaminas. Las diferentes cepas de algas tienen unos colores característicos que podemos asociar con su valor nutricional. Por ejemplo, la Chlorella es una alga muy saludable por su alto contenido en clorofilas, de ahí su pigmentación verdosa. Estas especies ya se cultivan a escala industrial y son cada vez más demandadas en la industria alimentaria.
.
.
.
.
.
.
.
source: 3drp

  科学家研究3D打印食物技术的可能性已有多年时间,也曾出现过多种概念项目。而现今推出的一项新型技术,使在家3D打印健康食品将在不远的将来得以实现。Marin Sawa博士最近正在开发一个名叫“藻矿生物打印机(Algaerium Bioprinter)”的设备,以海藻为原料做成符合人们营养需求的食物。 “Algaerium Bioprinter”的原材料是人工培植的微藻类,用这些原材料就能打印出绿色食品。打印过程中,这些藻类培养皿就相当于材料盒,其中包括有“超级食品”之称的小球藻、螺旋藻和雨生红球藻。由于这些藻群是彩色的,因此可以使用彩色模式进行打印。虽然打印出来的海藻听起来不怎么好吃,但是作为微藻类的原材料却具有丰富的维他命和矿物质。在微观领域,生物打印技术诠释了细胞能够被破坏以及营养物质被吸收的过程,而这种技术的设想也使得藻类农业模式成为加强食品安全的新型农业之一。目前,在设施方面,也在研发打印藻类的能源设备及过滤设备。这项工程是Sawa在伦敦中央圣马丁艺术与设计学院博士研究项目中的一部分。
.
.
.
.
.
.
.
source: marins

Illuminated Algae
Exploring how biological processes can be used to design domestic living textiles, Central Saint Martins College graduate Marin Sawa has created architectural algae textiles. Sawa’s project Algaerium
celebrates the special characteristics of green and white algae. Sawa has created a new type of
bio-power in the form of light from bioluminescent algae. Algaerium is made up of a modular structure that pumps micro algae through clear flexible tubes. The movement within the system agitates the bioluminescent algae and makes it glow. Algae is traditionally grown on an industrial scale, but Algaeruim brings this powerful green marvel into the home environment for living light.
.
.
.
.
.
.
.
source: thisisalive

The ‘Algaerium Bioprinter’ prototype demonstrates how microalgae can be cultivated in our domestic space to provide digitally printed health food on demand. This project refers to my previous work, which explored the aesthetic and functions of microalgae living systems. Here, Algaerium acts as an ink reservoir, containing ‘superfood’ microalgae such as Chlorella, Spirulina and Haematococcus. The selection of the algae strains reflects the diversity of colours in algae and allows for colourful printed patterns. Often algaes’ colours also indicate their nutraceutical values. For instance, Chlorella is exploited as health food for its high content of chlorophylls, responsible for its green pigmentation. Such species are cultivated on industrial scale and are increasingly in demand in today’s global health food market.

Algaue bio-reactors and cultures.
THE BIOPRINTER ENVISIONS AN IMMEDIATE FUTURE IN WHICH ALGAE ‘FARMING’ FORMS A NEW PART OF URBAN AGRICULTURE TO REINFORCE FOOD SAFETY IN OUR CITIES.

My project aims at adapting this industrial-scale production to a domestic technology. For this, I have been working in collaboration with Imperial College London to develop a new inkjet printing technology suitable for algae printing. By introducing living microalgae to food printing, we have invented a new way of consuming health food supplements. At micro scale, the Bioprinter technology provides a process in which cells can be ruptured and their nutrients can be readily absorbed. At macro scale, the Bioprinter envisions an immediate future in which algae ‘farming’ forms a new part of urban agriculture to reinforce food safety in our cities. We are also currently developing the technology to print algal-based energy devices as well as filtering devices. This research is part of my doctoral research at Central Saint Martins College of Arts and Design in London in collaboration with Imperial College London.
.
.
.
.
.
.
.
.
source: marins

The ‘Algaerium Bioprinter’ envisions how microalgal cells can be grown and digitally printed for production of ‘fresh’ food supplements, organic dyes on paper, and printable biological solar batteries. The solar battery application is based on my current laboratory collaboration with biochemists working in bioenergy from microalgae. This Bioprinter concept is backed up by our newly invented biotechnology ‘Algae Printing’.

Algae Printing applies various biotechnological strains of microalgae as inkjet-printing inks, to suit one of the applications as required. The Algaerium inkjet cartridge acts as an aesthetic photobioreactor, growing microalgae as ‘living inks’. The living ink is micro cells alive with ‘photopigments’ for photosynthesis. The ink cartridge design is part of the Algaerium Bioprinter concept design which supports oxygenic photosynthesis, feeding algae on the surrounding CO2 and light in the urban indoor environment.

In the case of printing ‘superfood’ Chlorella cells onto edible paper, Algae Printing connects current excitements in between food printing and ‘superfood’ algae. The Algae Printing technology provides a process in which cells can be ruptured and their nutrients can be readily absorbed. At maco scale, localisation of biotechnological production is introduced through reinventing existing digital technologies and their technoscientifc objects (printers, laptops, ink cartridges, etc).